请输入您要查询的字词:

 

单词 GeneralizedKroneckerDeltaSymbol
释义

generalized Kronecker delta symbol


Let l and n be natural numbersMathworldPlanetmath such that 1ln.Further, let ik and jk be natural numbers in {1,,n}for all k in {1,,l}.Then thegeneralized Kronecker delta symbol, denoted byδj1jli1il,is zero if ir=isor jr=js for some rs, or if{i1,,il}{j1,,jl} as sets.If none of the above conditions are met, thenδj1jli1ilis defined as the sign of the permutationMathworldPlanetmath that mapsi1il to j1jl.

From the definition, it follows that when l=1,the generalized Kronecker delta symbol reduces tothe traditional delta symbol δji.Also, for l=n, we obtain

δj1jni1in=εi1inεj1jn,
δj1jn1n=εj1jn,

where εj1jn is the Levi-Civita permutation symbol.

For any l we can write the generalized delta functionas a determinantMathworldPlanetmath of traditional delta symbols. Indeed,if S(l) is the permutation groupMathworldPlanetmath of l elements, then

δj1jli1il=τS(l)signτδj1iτ(1)δjliτ(l)
=det(δj1i1δj1ilδjli1δjlil).

The first equality follows since the sum one the first line has only one non-zero term; the term forwhich iτ(k)=jk. The second equality follows from thedefinition of the determinant.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 11:14:05