请输入您要查询的字词:

 

单词 GeneratingFunctionOfLegendrePolynomials
释义

generating function of Legendre polynomials


For finding the generating function

F(t)=n=0Pn(z)tn

of the sequence of the Legendre polynomialsDlmfDlmfMathworldPlanetmath
P0(z)= 1
P1(z)=z
P2(z)=12(3z2-1)
P3(x)=12(5z3-3z)
P4(z)=18(35z4-30z2+3)
P5(z)=18(63z5-70z3+15z)
   
we have to present Pn(z) as the general coefficient of Taylor seriesMathworldPlanetmath in t,i.e. as the nth derivative of some F(t) in the origin, divided by the factorialMathworldPlanetmath n!.  The Cauchy integral formulaPlanetmathPlanetmath offers the chance to implement that.

Starting from the http://planetmath.org/node/11983Rodrigues formula of Legendre polynomials, we may write

Pn(z)=12nn!dndzn(z2-1)n=12nn!n!2iπc(ζ2-1)n(ζ-z)n+1𝑑ζ=12iπc(12ζ2-1ζ-z)ndζζ-z,

where the contour c runs anticlockwise once around the point z.  The change of variable

ζ2-12(ζ-z)=1t,dζ=zt-1-1-zt+t2t21-zt+t2dt

gives

Pn(z)=-12iπcdttnt1-zt+t2

where t must go round the origin clockwise, but in

Pn(z)=1n!n!2iπcdt1-zt+t2(t-0)n+1

anticlockwise.  This is, by Cauchy integral formula again,

Pn(z)=1n![dndtn11-zt+t2]t=0.

This means that

F(t):=11-zt+t2

is the searched generating function of the Legendre polynomials:

11-zt+t2=P0(z)+P1(z)t+P2(z)t2+P3(z)t3+

Cf. the generating function of the Bessel functionsDlmfMathworldPlanetmathPlanetmath.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 4:52:53