请输入您要查询的字词:

 

单词 HahnBanachTheorem
释义

Hahn-Banach theorem


The Hahn-Banach theoremMathworldPlanetmath is a foundational result in functionalanalysisMathworldPlanetmathPlanetmath. Roughly speaking, it asserts the existence of a greatvarietyMathworldPlanetmath of bounded (and hence continuousMathworldPlanetmathPlanetmath) linear functionalsMathworldPlanetmathPlanetmath on annormed vector spacePlanetmathPlanetmath, even if that space happens to beinfinite-dimensional. We first consider anabstract version of this theoremMathworldPlanetmath, and then give the more classicalresult as a corollary.

Let V be a real, or a complex vector space, with Kdenoting the corresponding field of scalars, and let

p:V+

be a seminormMathworldPlanetmath on V.

Theorem 1

Let f:UK be a linear functional defined on a subspacePlanetmathPlanetmathUV. If the restricted functionalMathworldPlanetmathPlanetmath satisfies

|f(𝐮)|p(𝐮),𝐮U,

then it can be extended to all of V without violating the aboveproperty. To be more precise, there exists a linear functionalF:VK such that

F(𝐮)=f(𝐮),𝐮U
|F(𝐮)|p(𝐮),𝐮V.
Definition 2

We say that a linear functional f:VK is bounded ifthere exists a bound BR+ such that

|f(𝐮)|Bp(𝐮),𝐮V.(1)

If f is a bounded linear functional, we define f, thenorm of f, according to

f=sup{|f(𝐮)|:p(𝐮)=1}.

One can show that f is the infimumMathworldPlanetmath of all the possibleB that satisfy (1)

Theorem 3 (Hahn-Banach)

Let f:UK be a bounded linear functional defined on a subspaceUV. Let fU denote the norm of f relativeto the restricted seminorm on U. Then there exists a boundedextensionPlanetmathPlanetmath F:VK with the same norm, i.e.

FV=fU.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 16:13:32