请输入您要查询的字词:

 

单词 HamiltonianGroup
释义

Hamiltonian group


A Hamiltonian groupMathworldPlanetmath is a non-abelian groupMathworldPlanetmath in which all subgroupsMathworldPlanetmathPlanetmath (http://planetmath.org/Subgroup) are normal.

Richard Dedekind investigated finite Hamiltonian groups in 1895, and proved that they all contain a copy of the quaternion groupMathworldPlanetmathPlanetmath Q8 of order 8 (see the structureMathworldPlanetmath theorem below). He named them in honour of William Hamilton, the discoverer of quaternions.

Groups in which all subgroups are normal (that is, groups that are either abelianMathworldPlanetmath or Hamiltonian) are sometimes called Dedekind groups, or quasi-Hamiltonian groups.

The following structure theorem was proved in its full form by Baer[1], but Dedekind already came close to it in his original paper[2].

Theorem.

A group is Hamiltonian if and only if it is isomorphicPlanetmathPlanetmathPlanetmathPlanetmath to Q8×Pfor some periodic abelian group P that has no element of order 4.

In particular, Hamiltonian groups are always periodic (in fact, locally finitePlanetmathPlanetmathPlanetmath), nilpotent of class 2, and solvable of length 2.

From the structure theorem one can also see that the only Hamiltonian p-groups (http://planetmath.org/PGroup4) are 2-groups of the form Q8×B,where B is an elementary abelian 2-group.

References

  • 1 R. Baer,Situation der Untergruppen und Struktur der Gruppe,S. B. Heidelberg. Akad. Wiss. 2 (1933), 12–17.
  • 2 R. Dedekind,Ueber Gruppen, deren sämmtliche Theiler Normaltheiler sind,Mathematische Annalen 48 (1897), 548–561. (This paper ishttp://gdz.sub.uni-goettingen.de/dms/resolveppn/?GDZPPN002256258available from GDZ.)
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 22:21:55