请输入您要查询的字词:

 

单词 HappyEndingProblem
释义

happy ending problem


The happy ending problemMathworldPlanetmath asks, for a given integer n>2, to find the smallest number g(n) of points laid on a plane in general position such that a subset of n points can be made the vertices of a convex n-agon.

Figure 1: Examples showing that g(4)5.

It is obvious that for n=3, just three points in general positionare sufficient to create a triangleMathworldPlanetmath. For n=4, Paul Erdős andEsther Klein (later Szekeres) determined that at least five points arenecessary, and Kalbfleisch later determined g(5)=9. Much later,George Szekeres (posthumously) and Lindsay Peters published a computerproof [6] that g(6)=17.

For higher n, Erdős and George Szekeres in 1935 gave the upper bound

g(n)(2n-4n-2)+1.

Later, in 1961 they gave the lower bound g(n)1+2n-2.

New ideas for the upper bound were in the air in the late 1990s, with Chung and Graham showing that if n4, then

g(n)(2n-4n-2),

while Kleitman and Pachter showed that then

g(n)(2n-4n-2)+7-2n.

And Géza Tóth and Pavel Valtr in 1998 gave the upper bound

g(n)(2n-5n-3)+2,

which in 2005 they refined to

g(n)(2n-5n-3)+1.

References

  • 1 F. R. K. Chung and R. L. Graham, Forced convex n-gons in the plane, Discrete Comput. Geom. 19 (1996), 229–233.
  • 2 P. Erdős and G. Szekeres, A combinatorial problem in geometryMathworldPlanetmathPlanetmath, Compositio Math. 2 (1935), 463–470.
  • 3 P. Erdős and G. Szekeres, On some extremum problems in elementary geometry, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 3–4 (1961), 53–62.
  • 4 D. Kleitman and L. Pachter, Finding convex sets among points in the plane, Discrete Comput. Geom. 19 (1998), 405–410.
  • 5 W. Morris and V. Soltan, The Erdős-Szekeres problem on points in convex position – a survey, Bull. Amer. Math. Soc. 37 (2000), 437–458.
  • 6 L. Peters and G. Szekeres, Computer solution to the 17-point Erdős-Szekeres problem, ANZIAM J. 48 (2006), 151–164.
  • 7 G. Tóth and P. Valtr, Note on the Erdős-Szekeres theoremMathworldPlanetmath, Discrete Comput. Geom. 19 (1998), 457–459.
  • 8 G. Tóth and P. Valtr, The Erdős-Szekeres theorem: upper bounds and related results. Appearing in J. E. Goodman, J. Pach, and E. Welzl, eds., Combinatorial and computational geometry, Mathematical Sciences Research Institute Publications 52 (2005) 557–568.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/24 23:44:12