请输入您要查询的字词:

 

单词 Bohr-Favard Inequalities
释义

Bohr-Favard Inequalities

If has no spectrum in , then


(Bohr 1935). A related inequality states that if is the class of functions such that


are absolutely continuous and , then


(Northcott 1939). Further, for each value of , there is always a function belonging to and not identicallyzero, for which the above inequality becomes an equality (Favard 1936). These inequalities are discussed in Mitrinovic et al. (1991).


References

Bohr, H. ``Ein allgemeiner Satz über die Integration eines trigonometrischen Polynoms.'' Prace Matem.-Fiz. 43, 1935.

Favard, J. ``Application de la formule sommatoire d'Euler à la démonstration de quelques propriétés extrémales des intégrale des fonctions périodiques ou presquepériodiques.'' Mat. Tidsskr. B, 81-94, 1936. [Reviewed in Zentralblatt f. Math. 16, 58-59, 1939.]

Mitrinovic, D. S.; Pecaric, J. E.; and Fink, A. M. Inequalities Involving Functions and Their Integrals and Derivatives. Dordrecht, Netherlands: Kluwer, pp. 71-72, 1991.

Northcott, D. G. ``Some Inequalities Between Periodic Functions and Their Derivatives.'' J. London Math. Soc. 14, 198-202, 1939.

Tikhomirov, V. M. ``Approximation Theory.'' In Analysis II. Convex Analysis and Approximation Theory (Ed. R. V. Gamkrelidze). New York: Springer-Verlag, pp. 93-255, 1990.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/4/4 23:54:44