单词 | Square Pyramidal Number | ||||||||
释义 | Square Pyramidal NumberA Figurate Number of the form
The only numbers which are simultaneously Square and pyramidal (the Cannonball Problem) are and , corresponding to and (Dickson 1952, p. 25; Ball and Coxeter 1987, p. 59;Ogilvy 1988), as conjectured by Lucas (1875, 1876) and proved by Watson (1918). The proof is far from elementary, andis equivalent to solving the Diophantine Equation
Numbers which are simultaneously Triangular and square pyramidal satisfythe Diophantine Equation
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 59, 1987. Beukers, F. ``On Oranges and Integral Points on Certain Plane Cubic Curves.'' Nieuw Arch. Wisk. 6, 203-210, 1988. Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 47-50, 1996. Dickson, L. E. History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Chelsea, 1952. Guy, R. K. ``Figurate Numbers.'' §D3 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 147-150, 1994. Lucas, É. Question 1180. Nouvelles Ann. Math. Ser. 2 14, 336, 1875. Lucas, É. Solution de Question 1180. Nouvelles Ann. Math. Ser. 2 15, 429-432, 1876. Ogilvy, C. S. and Anderson, J. T. Excursions in Number Theory. New York: Dover, pp. 77 and 152, 1988. Sloane, N. J. A. SequenceA000330/M3844in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995. Watson, G. N. ``The Problem of the Square Pyramid.'' Messenger. Math. 48, 1-22, 1918. |
||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。