| 释义 |
Dedekind Eta FunctionLet
 | (1) |
then the Dedekind eta function is defined over the upper half-plane by
 | (2) |
which can be written as
 | (3) |
(Weber 1902, pp. 85 and 112; Atkin and Morain 1993). is a Modular Form. Letting be a Root of Unity, satisfies
(Weber 1902, p. 113; Atkin and Morain 1993).See also Dirichlet Eta Function, Theta Function, Weber Functions References
Atkin, A. O. L. and Morain, F. ``Elliptic Curves and Primality Proving.'' Math. Comput. 61, 29-68, 1993.Weber, H. Lehrbuch der Algebra, Vols. I-II. New York: Chelsea, 1902. |