请输入您要查询的字词:

 

单词 Diophantine Equation nth Powers
释义

Diophantine Equation nth Powers

The 2-1 equation

(1)

is a special case of Fermat's Last Theorem and so has no solutions for . Lander et al. (1967) give a table showing the smallest for which a solution to


with is known.
 
2345678910
1233478111523
222247891219
3   33781124
4     471023
5     551116
6       627
7        7

Take the results from the Ramanujan 6-10-8 Identity that for , with

(2)
and

(3)
then
(4)

Using
(5)
(6)

now gives


(7)

for or 4.

See also Ramanujan 6-10-8 Identity


References

Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, p. 101, 1994.

Berndt, B. C. and Bhargava, S. ``Ramanujan--For Lowbrows.'' Amer. Math. Monthly 100, 644-656, 1993.

Dickson, L. E. History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Chelsea, pp. 653-657, 1966.

Gloden, A. Mehrgradige Gleichungen. Groningen, Netherlands: P. Noordhoff, 1944.

Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, 1994.

Lander, L. J.; Parkin, T. R.; and Selfridge, J. L. ``A Survey of Equal Sums of Like Powers.'' Math. Comput. 21, 446-459, 1967.

Reznick, B. ``Sums of Even Powers of Real Linear Forms.'' Mem. Amer. Math. Soc. No. 463, 96. Providence, RI: Amer. Math. Soc., 1992.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2024/11/15 3:43:36