请输入您要查询的字词:

 

单词 Dobinski's Formula
释义

Dobinski's Formula

Gives the th Bell Number,

(1)

It can be derived by dividing the formula for a Stirling Number of the Second Kind by , yielding
(2)

Then
(3)

and
(4)

Now setting gives the identity (Dobinski 1877; Rota 1964; Berge 1971, p. 44; Comtet 1974, p. 211; Roman1984, p. 66; Lupas 1988; Wilf 1990, p. 106; Chen and Yeh 1994; Pitman 1997).


References

Berge, C. Principles of Combinatorics. New York: Academic Press, 1971.

Chen, B. and Yeh, Y.-N. ``Some Explanations of Dobinski's Formula.'' Studies Appl. Math. 92, 191-199, 1994.

Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Boston, MA: Reidel, 1974.

Dobinski, G. ``Summierung der Reihe für , 2, 3, 4, 5, ....'' Grunert Archiv (Arch. Math. Phys.) 61, 333-336, 1877.

Foata, D. La série génératrice exponentielle dans les problèmes d'énumération. Vol. 54 of Séminaire de Mathématiques supérieures. Montréal, Canada: Presses de l'Université de Montréal, 1974.

Lupas, A. ``Dobinski-Type Formula for Binomial Polynomials.'' Stud. Univ. Babes-Bolyai Math. 33, 30-44, 1988.

Pitman, J. ``Some Probabilistic Aspects of Set Partitions.'' Amer. Math. Monthly 104, 201-209, 1997.

Roman, S. The Umbral Calculus. New York: Academic Press, 1984.

Rota, G.-C. ``The Number of Partitions of a Set.'' Amer. Math. Monthly 71, 498-504, 1964.

Wilf, H. Generatingfunctionology, 2nd ed. San Diego, CA: Academic Press, 1990.

随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2024/11/15 2:44:55