释义 |
Wigner 3j-SymbolThe Wigner symbols are written
| (1) |
and are sometimes expressed using the related Clebsch-Gordan Coefficients
| (2) |
(Condon and Shortley 1951, pp. 74-75; Wigner 1959, p. 206), or Racah V-Coefficient
| (3) |
Connections among the three are
| (4) |
| (5) |
| (6) |
The Wigner -symbols have the symmetries
The symbols obey the orthogonality relations
| (8) |
| (9) |
where is the Kronecker Delta.
General formulas are very complicated, but some specific cases are | | | (10) |
| | | (11) |
| (12) |
for .
For Spherical Harmonics , | | | (13) | For values of obeying the Triangle Condition , | | | (14) | and
| (15) |
See also Clebsch-Gordan Coefficient, Racah V-Coefficient, Racah W-Coefficient, Wigner 6j-Symbol, Wigner 9j-Symbol References
Abramowitz, M. and Stegun, C. A. (Eds.). ``Vector-Addition Coefficients.'' §27.9 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 1006-1010, 1972.Condon, E. U. and Shortley, G. The Theory of Atomic Spectra. Cambridge, England: Cambridge University Press, 1951. de Shalit, A. and Talmi, I. Nuclear Shell Theory. New York: Academic Press, 1963. Gordy, W. and Cook, R. L. Microwave Molecular Spectra, 3rd ed. New York: Wiley, pp. 804-811, 1984. Messiah, A. ``Clebsch-Gordan (C.-G.) Coefficients and `' Symbols.'' Appendix C.I in Quantum Mechanics, Vol. 2. Amsterdam, Netherlands: North-Holland, pp. 1054-1060, 1962. Rotenberg, M.; Bivens, R.; Metropolis, N.; and Wooten, J. K. The and Symbols. Cambridge, MA: MIT Press, 1959. Shore, B. W. and Menzel, D. H. Principles of Atomic Spectra. New York: Wiley, pp. 275-276, 1968. Sobel'man, I. I. ``Angular Momenta.'' Ch. 4 in Atomic Spectra and Radiative Transitions, 2nd ed. Berlin: Springer-Verlag, 1992. Wigner, E. P. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, expanded and improved ed. New York: Academic Press, 1959.
|