请输入您要查询的字词:

 

单词 Euler-Maclaurin Integration Formulas
释义

Euler-Maclaurin Integration Formulas

The first Euler-Maclaurin integration formula is

(1)
where are Bernoulli Numbers. Sums may be converted to Integrals by inverting the Formula to obtain


(2)

For a more general case when is tabulated at values , , ..., ,
(3)


The Euler-Maclaurin formula is implemented in Mathematica (Wolfram Research, Champaign, IL) as the functionNSum with option Method->Integrate.


The second Euler-Maclaurin integration formula is used when is tabulated at values , , ...,:

See also Sum, Wynn's Epsilon Method


References

Abramowitz, M. and Stegun, C. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 16 and 806, 1972.

Arfken, G. ``Bernoulli Numbers, Euler-Maclaurin Formula.'' §5.9 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 327-338, 1985.

Borwein, J. M.; Borwein, P. B.; and Dilcher, K. ``Pi, Euler Numbers, and Asymptotic Expansions.'' Amer. Math. Monthly 96, 681-687, 1989.

Vardi, I. ``The Euler-Maclaurin Formula.'' §8.3 in Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, pp. 159-163, 1991.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/4/5 13:23:06