单词 | Fast Fourier Transform | ||||
释义 | Fast Fourier TransformThe fast Fourier transform (FFT) is a Discrete Fourier Transform Algorithm which reduces the number ofcomputations needed for FFTs were first discussed by Cooley and Tukey (1965), although Gauß Fast Fourier transform algorithms generally fall into two classes: decimation in time, and decimation in frequency.The Cooley-Tukey FFT Algorithm first rearranges the input elements in bit-reversed order, then builds the outputtransform (decimation in time). The basic idea is to break up a transform of length
The Sande-Tukey Algorithm (Stoer and Bulirsch 1980) first transforms, then rearranges the output values (decimationin frequency). See also Danielson-Lanczos Lemma, Discrete Fourier Transform, Fourier Matrix, Fourier Transform, HartleyTransform, Number Theoretic Transform, Winograd Transform
Arndt, J. ``FFT Code and Related Stuff.'' http://www.jjj.de//fxt/. Bell Laboratories. ``Netlib FFTPack.'' http://netlib.bell-labs.com/netlib/fftpack/. Blahut, R. E. Fast Algorithms for Digital Signal Processing. New York: Addison-Wesley, 1984. Bracewell, R. The Fourier Transform and Its Applications. New York: McGraw-Hill, 1965. Brigham, E. O. The Fast Fourier Transform and Applications. Englewood Cliffs, NJ: Prentice Hall, 1988. Cooley, J. W. and Tukey, O. W. ``An Algorithm for the Machine Calculation of Complex Fourier Series.'' Math. Comput. 19, 297-301, 1965. Duhamel, P. and Vetterli, M. ``Fast Fourier Transforms: A Tutorial Review.'' Signal Processing 19, 259-299, 1990. Gergkand, G. D. ``A Guided Tour of the Fast Fourier Transform.'' IEEE Spectrum, pp. 41-52, July 1969. Lipson, J. D. Elements of Algebra and Algebraic Computing. Reading, MA: Addison-Wesley, 1981. Nussbaumer, H. J. Fast Fourier Transform and Convolution Algorithms, 2nd ed. New York: Springer-Verlag, 1982. Papoulis, A. The Fourier Integral and its Applications. New York: McGraw-Hill, 1962. Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. ``Fast Fourier Transform.'' Ch. 12 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 490-529, 1992. Stoer, J. and Bulirsch, R. Introduction to Numerical Analysis. New York: Springer-Verlag, 1980. Strang, G. ``Wavelet Transforms Versus Fourier Transforms.'' Bull. Amer. Math. Soc. 28, 288-305, 1993. Van Loan, C. Computational Frameworks for the Fast Fourier Transform. Philadelphia, PA: SIAM, 1992. Walker, J. S. Fast Fourier Transform, 2nd ed. Boca Raton, FL: CRC Press, 1996. |
||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。