单词 | Feigenbaum Constant | ||||||||||||||||||||||||||||||||||||||||||||
释义 | Feigenbaum ConstantA universal constant for functions approaching Chaos via period doubling. It was discovered by Feigenbaum in 1975and demonstrated rigorously by Lanford (1982) and Collet and Eckmann (1979, 1980). The Feigenbaum constant
![]() ![]() ![]() ![]()
Amazingly, the Feigenbaum constant
![]()
The Circle Map is not universal, and has a Feigenbaum constant of
the Feigenbaum constant is ![]()
![]() ![]() ![]() ![]()
An additional constant
![]()
Briggs, K. ``A Precise Calculation of the Feigenbaum Constants.'' Math. Comput. 57, 435-439, 1991. Briggs, K.; Quispel, G.; and Thompson, C. ``Feigenvalues for Mandelsets.'' J. Phys. A: Math. Gen. 24 3363-3368, 1991. Briggs, K.; Quispel, G.; and Thompson, C. ``Feigenvalues for Mandelsets.'' http://epidem13.plantsci.cam.ac.uk/~kbriggs/. Collet, P. and Eckmann, J.-P. ``Properties of Continuous Maps of the Interval to Itself.'' Mathematical Problems in Theoretical Physics (Ed. K. Osterwalder). New York: Springer-Verlag, 1979. Collet, P. and Eckmann, J.-P. Iterated Maps on the Interval as Dynamical Systems. Boston, MA: Birkhäuser, 1980. Eckmann, J.-P. and Wittwer, P. Computer Methods and Borel Summability Applied to Feigenbaum's Equations. New York: Springer-Verlag, 1985. Feigenbaum, M. J. ``Presentation Functions, Fixed Points, and a Theory of Scaling Function Dynamics.'' J. Stat. Phys. 52, 527-569, 1988. Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/fgnbaum/fgnbaum.html Finch, S. ``Generalized Feigenbaum Constants.'' http://www.mathsoft.com/asolve/constant/fgnbaum/general.html. Lanford, O. E. ``A Computer-Assisted Proof of the Feigenbaum Conjectures.'' Bull. Amer. Math. Soc. 6, 427-434, 1982. Rasband, S. N. Chaotic Dynamics of Nonlinear Systems. New York: Wiley, 1990. Stephenson, J. W. and Wang, Y. ``Numerical Solution of Feigenbaum's Equation.'' Appl. Math. Notes 15, 68-78, 1990. Stephenson, J. W. and Wang, Y. ``Relationships Between the Solutions of Feigenbaum's Equations.'' Appl. Math. Let. 4, 37-39, 1991. Tabor, M. Chaos and Integrability in Nonlinear Dynamics: An Introduction. New York: Wiley, 1989. |
||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。