请输入您要查询的字词:

 

单词 Adams' Method
释义

Adams' Method

Adams' method is a numerical Method for solving linear First-Order Ordinary Differential Equations of the form

(1)

Let
(2)

be the step interval, and consider the Maclaurin Series of about ,


(3)


(4)

Here, the Derivatives of are given by the Backward Differences
(5)
(6)
(7)

etc. Note that by (1), is just the value of .


For first-order interpolation, the method proceeds by iterating the expression

(8)

where . The method can then be extended to arbitrary order using the finite differenceintegration formula from Beyer (1987)


(9)

to obtain
(10)
Note that von Kármán and Biot (1940) confusingly use the symbol normally used for Forward Differences to denote Backward Differences .

See also Gill's Method, Milne's Method, Predictor-Corrector Methods,Runge-Kutta Method


References

Abramowitz, M. and Stegun, C. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 896, 1972.

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 455, 1987.

Kármán, T. von and Biot, M. A. Mathematical Methods in Engineering: An Introduction to the Mathematical Treatment of Engineering Problems. New York: McGraw-Hill, pp. 14-20, 1940.

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, p. 741, 1992.

随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/4/4 23:13:38