单词 | j-Function | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 | j-FunctionThe -function is defined as
(Weber 1902, p. 179; Atkin and Morain 1993). The -function is a Meromorphic function on the upper half of the Complex Plane which is invariant withrespect to the Special Linear Group . It has a Fourier Series
Then all of the Coefficients in the Laurent Series
It then turns out that is an Algebraic Integer of degree , where is the Class Number ofthe Discriminant of the Quadratic Field (Silverman 1986). The first term in the Laurent Series is then or ,and all the later terms are Powers of , which are small numbers. The larger , the faster theseries converges. If , then is a Algebraic Integer of degree 1, i.e., just a plain Integer. Furthermore, the Integer is a perfect Cube. The numbers whose Laurent Series give Integers are those with Class Number 1. But theseare precisely the Heegner Numbers , , , , , , , , . Thegreater (in Absolute Value) the Heegner Number , the closer to an Integer is the expression, since the initial term in is the largest and subsequent terms are the smallest. The bestapproximations with are therefore
The exact values of corresponding to the Heegner Numbers are
(The number 5280 is particularly interesting since it is also the number of feet in amile. ) The Almost Integer generated by the last of these, (corresponding to the field and the Imaginary quadratic field ofmaximal discriminant), is known as the Ramanujan Constant. , , and are also Almost Integers. Thesecorrespond to binary quadratic forms with discriminants , , and , all of which have Class Number twoand were noted by Ramanujan (Berndt 1994). It turns out that the -function also is important in the Classification Theorem for finite simple groups, andthat the factors of the orders of the Sporadic Groups, including the celebrated MonsterGroup, are also related. See also Almost Integer, Klein's Absolute Invariant, Weber Functions
Atkin, A. O. L. and Morain, F. ``Elliptic Curves and Primality Proving.'' Math. Comput. 61, 29-68, 1993. Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, pp. 90-91, 1994. Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 117-118, 1987. Cohn, H. Introduction to the Construction of Class Fields. New York: Dover, p. 73, 1994. Conway, J. H. and Guy, R. K. ``The Nine Magic Discriminants.'' In The Book of Numbers. New York: Springer-Verlag, pp. 224-226, 1996. Morain, F. ``Implementation of the Atkin-Goldwasser-Kilian Primality Testing Algorithm.'' Rapport de Récherche 911, INRIA, Oct. 1988. Rankin, R. A. Modular Forms. New York: Wiley, 1985. Rankin, R. A. Modular Forms and Functions. Cambridge, England: Cambridge University Press, p. 199, 1977. Serre, J. P. Cours d'arithmétique. Paris: Presses Universitaires de France, 1970. Silverman, J. H. The Arithmetic of Elliptic Curves. New York: Springer-Verlag, p. 339, 1986. Sloane, N. J. A. SequenceA000521/M5477in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995. Weber, H. Lehrbuch der Algebra, Vols. I-II. New York: Chelsea, 1979. Weisstein, E. W. ``-Function.'' Mathematica notebook jFunction.m. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。