单词 | Knight's Tour |
释义 | Knight's Tour![]() ![]() A knight's tour of a Chessboard (or any other grid) is a sequence of moves by a knight Chess piece (which mayonly make moves which simultaneously shift one square along one axis and two along the other) such that each square of theboard is visited exactly once (i.e., a Hamiltonian Circuit). If the final position is a knight's move away from the first position, the tour is called re-entrant. The first figure above shows a knight's tour on a Löbbing and Wegener (1996) computed the number of cycles covering the directed knight's graph for an The following results are given by Kraitchik (1942). The number of possible tours on a
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 175-186, 1987. Chartrand, G. ``The Knight's Tour.'' §6.2 in Introductory Graph Theory. New York: Dover, pp. 133-135, 1985. Gardner, M. ``Knights of the Square Table.'' Ch. 14 in Mathematical Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-of-Mind from Scientific American. New York: Vintage, pp. 188-202, 1978. Guy, R. K. ``The Kraitchik, M. ``The Problem of the Knights.'' Ch. 11 in Mathematical Recreations. New York: W. W. Norton, pp. 257-266, 1942. Madachy, J. S. Madachy's Mathematical Recreations. New York: Dover, pp. 87-89, 1979. Ruskey, F. ``Information on the Sloane, N. J. A. SequencesA003192/M1369and A006075/M3224in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995. van der Linde, A. Geschichte und Literatur des Schachspiels, Vol. 2. Berlin, pp. 101-111, 1874. Volpicelli, P. ``Soluzione completa e generale, mediante la geometria di situazione, del problema relativo alle corse del cavallo sopra qualunque scacchiere.'' Atti della Reale Accad. dei Lincei 25, 87-162, 1872. Wegener, I. and Löbbing, M. ``The Number of Knight's Tours Equals 33,439,123,484,294--Counting with Binary Decision Diagrams.'' Electronic J. Combinatorics 3, R5 1-4, 1996.http://www.combinatorics.org/Volume_3/volume3.html#R5. |
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。