单词 | Lucas Pseudoprime |
释义 | Lucas PseudoprimeWhen and are Integers such that , define the Lucas Sequence by for , with and the two Roots of . Then define a Lucas pseudoprime as an Odd Compositenumber such that , the Jacobi Symbol , and . There are no Even Lucas pseudoprimes (Bruckman 1994). The first few Lucas pseudoprimes are 705, 2465, 2737, 3745, ...(Sloane's A005845). See also Extra Strong Lucas Pseudoprime, Lucas Sequence, Pseudoprime, Strong Lucas Pseudoprime
Bruckman, P. S. ``Lucas Pseudoprimes are Odd.'' Fib. Quart. 32, 155-157, 1994. Ribenboim, P. ``Lucas Pseudoprimes (lpsp()).'' §2.X.B in The New Book of Prime Number Records, 3rd ed. New York: Springer-Verlag, p. 129, 1996. Sloane, N. J. A. SequenceA005845/M5469in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995. |
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。