单词 | Mersenne Prime | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 | Mersenne PrimeA Mersenne Number which is Prime is called a Mersenne prime. In order for the Mersenne number defined by for an Integer to be Prime, must be Prime. This is true since for Composite with factors and, . Therefore, can be written as , which is a Binomial Number and can be factored. EveryMersenne Prime gives rise to a Perfect Number. If is a Prime, then Divides Iff is Prime.It is also true that Prime divisors of must have the form where is a Positive Integerand simultaneously of either the form or (Uspensky and Heaslet). A Prime factor of a Mersenne number is a Wieferich Prime Iff , Therefore, Mersenne Primes arenot Wieferich Primes. All known Mersenne numbers with Prime are Squarefree. However, Guy (1994) believes that there are which are not Squarefree. Trial Division is often used to establish the Compositeness of a potential Mersenne prime. This test immediately shows to be Composite for , 23, 83, 131, 179, 191, 239, and 251 (with small factors 23,47, 167, 263, 359, 383, 479, and 503, respectively). A much more powerful primality test for is the Lucas-LehmerTest. It has been conjectured that there exist an infinite number of Mersenne primes, although finding them is computationallyvery challenging. The table below gives the index of known Mersenne primes (Sloane's A000043) , together with thenumber of digits, discovery years, and discoverer. A similar table has been compiled by C. Caldwell. Note that the regionafter the 35th known Mersenne prime has not been completely searched, so identification of ``the'' 36thMersenne prime is tentative. L. Welsh maintains an extensive bibliography and history of Mersenne numbers. G. Woltmanhas organized a distributed search program via the Internet in which hundreds of volunteers use their personal computers toperform pieces of the search.
Bateman, P. T.; Selfridge, J. L.; and Wagstaff, S. S. ``The New Mersenne Conjecture.'' Amer. Math. Monthly 96, 125-128, 1989. Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 66, 1987. Beiler, A. H. Ch. 3 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. New York: Dover, 1966. Caldwell, C. ``Mersenne Primes: History, Theorems and Lists.'' http://www.utm.edu/research/primes/mersenne.shtml. Caldwell, C. ``GIMPS Finds a Prime! is Prime.'' http://www.utm.edu/research/primes/notes/1398269/. Colquitt, W. N. and Welsh, L. Jr. ``A New Mersenne Prime.'' Math. Comput. 56, 867-870, 1991. Conway, J. H. and Guy, R. K. ``Mersenne's Numbers.'' In The Book of Numbers. New York: Springer-Verlag, pp. 135-137, 1996. Gillies, D. B. ``Three New Mersenne Primes and a Statistical Theory.'' Math Comput. 18, 93-97, 1964. Guy, R. K. ``Mersenne Primes. Repunits. Fermat Numbers. Primes of Shape [sic].'' §A3 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 8-13, 1994. Haghighi, M. ``Computation of Mersenne Primes Using a Cray X-MP.'' Intl. J. Comput. Math. 41, 251-259, 1992. Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 14-16, 1979. Kraitchik, M. ``Mersenne Numbers and Perfect Numbers.'' §3.5 in Mathematical Recreations. New York: W. W. Norton, pp. 70-73, 1942. Kravitz, S. and Berg, M. ``Lucas' Test for Mersenne Numbers .'' Math. Comput. 18, 148-149, 1964. Lehmer, D. H. ``On Lucas's Test for the Primality of Mersenne's Numbers.'' J. London Math. Soc. 10, 162-165, 1935. Leyland, P. ftp://sable.ox.ac.uk/pub/math/factors/mersenne. Mersenne, M. Cogitata Physico-Mathematica. 1644. Mersenne Organization. ``GIMPS Discovers 36th Known Mersenne Prime, is Now the Largest Known Prime.'' http://www.mersenne.org/2976221.htm. Mersenne Organization. ``GIMPS Discovers 37th Known Mersenne Prime, is Now the Largest Known Prime.'' http://www.mersenne.org/3021377.htm. Noll, C. and Nickel, L. ``The 25th and 26th Mersenne Primes.'' Math. Comput. 35, 1387-1390, 1980. Powers, R. E. ``The Tenth Perfect Number.'' Amer. Math. Monthly 18, 195-196, 1911. Powers, R. E. ``Note on a Mersenne Number.'' Bull. Amer. Math. Soc. 40, 883, 1934. Sloane, N. J. A. SequenceA000043/M0672in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995. Slowinski, D. ``Searching for the 27th Mersenne Prime.'' J. Recreat. Math. 11, 258-261, 1978-1979. Slowinski, D. Sci. News 139, 191, 9/16/1989. Tuckerman, B. ``The 24th Mersenne Prime.'' Proc. Nat. Acad. Sci. USA 68, 2319-2320, 1971. Uhler, H. S. ``A Brief History of the Investigations on Mersenne Numbers and the Latest Immense Primes.'' Scripta Math. 18, 122-131, 1952. Uspensky, J. V. and Heaslet, M. A. Elementary Number Theory. New York: McGraw-Hill, 1939. Weisstein, E. W. ``Mersenne Numbers.'' Mathematica notebook Mersenne.m. Welsh, L. ``Marin Mersenne.'' http://www.scruznet.com/~luke/mersenne.htm. Welsh, L. ``Mersenne Numbers & Mersenne Primes Bibliography.'' http://www.scruznet.com/~luke/biblio.htm. Woltman, G. ``The GREAT Internet Mersenne Prime Search.'' http://www.mersenne.org/prime.htm. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。