请输入您要查询的字词:

 

单词 Mersenne Prime
释义

Mersenne Prime

A Mersenne Number which is Prime is called a Mersenne prime. In order for the Mersenne number defined by


for an Integer to be Prime, must be Prime. This is true since for Composite with factors and, . Therefore, can be written as , which is a Binomial Number and can be factored. EveryMersenne Prime gives rise to a Perfect Number.


If is a Prime, then Divides Iff is Prime.It is also true that Prime divisors of must have the form where is a Positive Integerand simultaneously of either the form or (Uspensky and Heaslet). A Prime factor of a Mersenne number is a Wieferich Prime Iff , Therefore, Mersenne Primes arenot Wieferich Primes. All known Mersenne numbers with Prime are Squarefree. However, Guy (1994) believes that there are which are not Squarefree.


Trial Division is often used to establish the Compositeness of a potential Mersenne prime. This test immediately shows to be Composite for , 23, 83, 131, 179, 191, 239, and 251 (with small factors 23,47, 167, 263, 359, 383, 479, and 503, respectively). A much more powerful primality test for is the Lucas-LehmerTest.


It has been conjectured that there exist an infinite number of Mersenne primes, although finding them is computationallyvery challenging. The table below gives the index of known Mersenne primes (Sloane's A000043) , together with thenumber of digits, discovery years, and discoverer. A similar table has been compiled by C. Caldwell. Note that the regionafter the 35th known Mersenne prime has not been completely searched, so identification of ``the'' 36thMersenne prime is tentative. L. Welsh maintains an extensive bibliography and history of Mersenne numbers. G. Woltmanhas organized a distributed search program via the Internet in which hundreds of volunteers use their personal computers toperform pieces of the search.


#DigitsYearPublished Reference
121Antiquity
231Antiquity
352Antiquity
473Antiquity
51341461Reguis 1536, Cataldi 1603
61761588Cataldi 1603
71961588Cataldi 1603
831101750Euler 1772
961191883Pervouchine 1883, Seelhoff 1886
1089271911Powers 1911
11107331913Powers 1914
12127391876Lucas 1876
135211571952Lehmer 1952-3, Robinson 1952
146071831952Lehmer 1952-3, Robinson 1952
1512793861952Lehmer 1952-3, Robinson 1952
1622036641952Lehmer 1952-3, Robinson 1952
1722816871952Lehmer 1952-3, Robinson 1952
1832179691957Riesel 1957
19425312811961Hurwitz 1961
20442313321961Hurwitz 1961
21968929171963Gillies 1964
22994129931963Gillies 1964
231121333761963Gillies 1964
241993760021971Tuckerman 1971
252170165331978Noll and Nickel 1980
262320969871979Noll 1980
2744497133951979Nelson and Slowinski 1979
2886243259621982Slowinski 1982
29110503332651988Colquitt and Welsh 1991
30132049397511983Slowinski 1988
31216091650501985Slowinski 1989
327568392278321992Gage and Slowinski 1992
338594332587161994Gage and Slowinski 1994
3412577873786321996Slowinski and Gage
3513982694209211996Armengaud, Woltman, et al.
36?29762218958321997Spence
37?30213779095261998Clarkson, Woltman, et al.

See also Cunningham Number, Fermat-Lucas Number, Fermat Number, Fermat Number (Lucas), FermatPolynomial, Lucas-Lehmer Test, Mersenne Number, Perfect Number, Repunit, SuperperfectNumber


References

Bateman, P. T.; Selfridge, J. L.; and Wagstaff, S. S. ``The New Mersenne Conjecture.'' Amer. Math. Monthly 96, 125-128, 1989.

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 66, 1987.

Beiler, A. H. Ch. 3 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. New York: Dover, 1966.

Caldwell, C. ``Mersenne Primes: History, Theorems and Lists.'' http://www.utm.edu/research/primes/mersenne.shtml.

Caldwell, C. ``GIMPS Finds a Prime! is Prime.'' http://www.utm.edu/research/primes/notes/1398269/.

Colquitt, W. N. and Welsh, L. Jr. ``A New Mersenne Prime.'' Math. Comput. 56, 867-870, 1991.

Conway, J. H. and Guy, R. K. ``Mersenne's Numbers.'' In The Book of Numbers. New York: Springer-Verlag, pp. 135-137, 1996.

Gillies, D. B. ``Three New Mersenne Primes and a Statistical Theory.'' Math Comput. 18, 93-97, 1964.

Guy, R. K. ``Mersenne Primes. Repunits. Fermat Numbers. Primes of Shape [sic].'' §A3 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 8-13, 1994.

Haghighi, M. ``Computation of Mersenne Primes Using a Cray X-MP.'' Intl. J. Comput. Math. 41, 251-259, 1992.

Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 14-16, 1979.

Kraitchik, M. ``Mersenne Numbers and Perfect Numbers.'' §3.5 in Mathematical Recreations. New York: W. W. Norton, pp. 70-73, 1942.

Kravitz, S. and Berg, M. ``Lucas' Test for Mersenne Numbers .'' Math. Comput. 18, 148-149, 1964.

Lehmer, D. H. ``On Lucas's Test for the Primality of Mersenne's Numbers.'' J. London Math. Soc. 10, 162-165, 1935.

Leyland, P. ftp://sable.ox.ac.uk/pub/math/factors/mersenne.

Mersenne, M. Cogitata Physico-Mathematica. 1644.

Mersenne Organization. ``GIMPS Discovers 36th Known Mersenne Prime, is Now the Largest Known Prime.'' http://www.mersenne.org/2976221.htm.

Mersenne Organization. ``GIMPS Discovers 37th Known Mersenne Prime, is Now the Largest Known Prime.'' http://www.mersenne.org/3021377.htm.

Noll, C. and Nickel, L. ``The 25th and 26th Mersenne Primes.'' Math. Comput. 35, 1387-1390, 1980.

Powers, R. E. ``The Tenth Perfect Number.'' Amer. Math. Monthly 18, 195-196, 1911.

Powers, R. E. ``Note on a Mersenne Number.'' Bull. Amer. Math. Soc. 40, 883, 1934.

Sloane, N. J. A. SequenceA000043/M0672in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.

Slowinski, D. ``Searching for the 27th Mersenne Prime.'' J. Recreat. Math. 11, 258-261, 1978-1979.

Slowinski, D. Sci. News 139, 191, 9/16/1989.

Tuckerman, B. ``The 24th Mersenne Prime.'' Proc. Nat. Acad. Sci. USA 68, 2319-2320, 1971.

Uhler, H. S. ``A Brief History of the Investigations on Mersenne Numbers and the Latest Immense Primes.'' Scripta Math. 18, 122-131, 1952.

Uspensky, J. V. and Heaslet, M. A. Elementary Number Theory. New York: McGraw-Hill, 1939.

Weisstein, E. W. ``Mersenne Numbers.'' Mathematica notebook Mersenne.m.

Welsh, L. ``Marin Mersenne.'' http://www.scruznet.com/~luke/mersenne.htm.

Welsh, L. ``Mersenne Numbers & Mersenne Primes Bibliography.'' http://www.scruznet.com/~luke/biblio.htm.

Woltman, G. ``The GREAT Internet Mersenne Prime Search.'' http://www.mersenne.org/prime.htm.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2024/11/15 2:45:01