单词 | Mertens Function |
释义 | Mertens FunctionThe summary function where is the Möbius Function. The first few values are 1, 0, , , , ,, , , , , , ... (Sloane's A002321). The first few values of at which are2, 39, 40, 58, 65, 93, 101, 145, 149, 150, ... (Sloane's A028442). Mertens function obeys (Lehman 1960). The analytic form is unsolved, although Mertens Conjecture that has been disproved. Lehman (1960) gives an algorithm for computing with operations,while the Lagarias-Odlyzko (1987) algorithm for computing the Prime Counting Function can be modifiedto give in operations. See also Mertens Conjecture, Möbius Function
Lagarias, J. and Odlyzko, A. ``Computing : An Analytic Method.'' J. Algorithms 8, 173-191, 1987. Lehman, R. S. ``On Liouville's Function.'' Math. Comput. 14, 311-320, 1960. Odlyzko, A. M. and te Riele, H. J. J. ``Disproof of the Mertens Conjecture.'' J. reine angew. Math. 357, 138-160, 1985. Sloane, N. J. A. SequencesA028442 andA002321/M0102in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995. |
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。