单词 | Motzkin Number | ||||||||||||||||||
释义 | Motzkin NumberThe Motzkin numbers enumerate various combinatorial objects. Donaghey and Shapiro (1977) give 14 different manifestations ofthese numbers. In particular, they give the number of paths from (0, 0) to (, 0) which never dip below and are madeup only of the steps (1, 0), (1, 1), and (1, ), i.e., , , and . The first are 1, 2, 4,9, 21, 51, ... (Sloane's A001006). The Motzkin number Generating Function satisfies
where is a Binomial Coefficient.See also Catalan Number, King Walk, Schröder Number
Barcucci, E.; Pinzani, R.; and Sprugnoli, R. ``The Motzkin Family.'' Pure Math. Appl. Ser. A 2, 249-279, 1991. Donaghey, R. ``Restricted Plane Tree Representations of Four Motzkin-Catalan Equations.'' J. Combin. Th. Ser. B 22, 114-121, 1977. Donaghey, R. and Shapiro, L. W. ``Motzkin Numbers.'' J. Combin. Th. Ser. A 23, 291-301, 1977. Kuznetsov, A.; Pak, I.; and Postnikov, A. ``Trees Associated with the Motzkin Numbers.'' J. Combin. Th. Ser. A 76, 145-147, 1996. Motzkin, T. ``Relations Between Hypersurface Cross Ratios, and a Combinatorial Formula for Partitions of a Polygon, for Permanent Preponderance, and for Nonassociative Products.'' Bull. Amer. Math. Soc. 54, 352-360, 1948. Sloane, N. J. A. SequenceA001006/M1184in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995. |
||||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。