| 单词 | Motzkin Number | ||||||||||||||||||
| 释义 | Motzkin Number![]() The Motzkin numbers enumerate various combinatorial objects.  Donaghey and Shapiro (1977) give 14 different manifestations ofthese numbers.  In particular, they give the number of paths from (0, 0) to ( 
 
 
 
 where 
 Barcucci, E.; Pinzani, R.; and Sprugnoli, R.  ``The Motzkin Family.''  Pure Math. Appl. Ser. A 2, 249-279, 1991. Donaghey, R.  ``Restricted Plane Tree Representations of Four Motzkin-Catalan Equations.''  J. Combin. Th. Ser. B 22,  114-121, 1977. Donaghey, R. and Shapiro, L. W.  ``Motzkin Numbers.''  J. Combin. Th. Ser. A 23, 291-301, 1977. Kuznetsov, A.; Pak, I.; and Postnikov, A.  ``Trees Associated with the Motzkin Numbers.''  J. Combin. Th. Ser. A 76, 145-147, 1996. Motzkin, T.  ``Relations Between Hypersurface Cross Ratios, and a Combinatorial Formula for Partitions of a Polygon, for Permanent   Preponderance, and for Nonassociative Products.''  Bull. Amer. Math. Soc. 54, 352-360, 1948. Sloane, N. J. A.  SequenceA001006/M1184in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences.  San Diego: Academic Press, 1995.  | 
	||||||||||||||||||
| 随便看 | 
	
  | 
	
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。