单词 | Motzkin Number | ||||||||||||||||||
释义 | Motzkin Number![]() The Motzkin numbers enumerate various combinatorial objects. Donaghey and Shapiro (1977) give 14 different manifestations ofthese numbers. In particular, they give the number of paths from (0, 0) to (
![]() ![]()
where ![]()
Barcucci, E.; Pinzani, R.; and Sprugnoli, R. ``The Motzkin Family.'' Pure Math. Appl. Ser. A 2, 249-279, 1991. Donaghey, R. ``Restricted Plane Tree Representations of Four Motzkin-Catalan Equations.'' J. Combin. Th. Ser. B 22, 114-121, 1977. Donaghey, R. and Shapiro, L. W. ``Motzkin Numbers.'' J. Combin. Th. Ser. A 23, 291-301, 1977. Kuznetsov, A.; Pak, I.; and Postnikov, A. ``Trees Associated with the Motzkin Numbers.'' J. Combin. Th. Ser. A 76, 145-147, 1996. Motzkin, T. ``Relations Between Hypersurface Cross Ratios, and a Combinatorial Formula for Partitions of a Polygon, for Permanent Preponderance, and for Nonassociative Products.'' Bull. Amer. Math. Soc. 54, 352-360, 1948. Sloane, N. J. A. SequenceA001006/M1184in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995. |
||||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。