单词 | Multiplicative Persistence | ||||||||||||||||||||||||||||||
释义 | Multiplicative PersistenceMultiply all the digits of a number For example, the sequence obtained from the starting number 9876 is (9876, 3024, 0), so 9876 has an multiplicativepersistence of two and a Multiplicative Digital Root of 0. The multiplicative persistences of the first few positiveintegers are 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2,2, 3, 1, 1, ... (Sloane's A031346). The smallest numbers having multiplicative persistences of 1, 2, ... are 10, 25,39, 77, 679, 6788, 68889, 2677889, 26888999, 3778888999, 277777788888899, ... (Sloane's A003001). There is no number ![]() There is a stronger conjecture that there is a maximum number lacking the Digit 1 for each persistence ![]() The maximum multiplicative persistence in base 2 is 1. It is conjectured that all powers of 2 The multiplicative persistence of an The concept of multiplicative persistence can be generalized to multiplying the
Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, Feb. 1972. Gottlieb, A. J. Problems 28-29 in ``Bridge, Group Theory, and a Jigsaw Puzzle.'' Techn. Rev. 72, unpaginated, Dec. 1969. Gottlieb, A. J. Problem 29 in ``Integral Solutions, Ladders, and Pentagons.'' Techn. Rev. 72, unpaginated, Apr. 1970. Guy, R. K. ``The Persistence of a Number.'' §F25 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 262-263, 1994. Sloane, N. J. A. ``The Persistence of a Number.'' J. Recr. Math. 6, 97-98, 1973. Sloane, N. J. A.A014553,A031346, andA003001/M4687in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html. |
||||||||||||||||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。