请输入您要查询的字词:

 

单词 Polylogarithm
释义

Polylogarithm

The function

(1)

Also known as Jonquière's Function. (Note that the Notation is also used forthe Feynman Diagram integrals, and the special case is called the Dilogarithm. The polylogarithm of Negative Integer order arises in sums of the form
(2)

where is an Eulerian Number.


The polylogarithm satisfies the fundamental identities

(3)


(4)

where is the Riemann Zeta Function. The derivative is therefore given by
(5)

or in the special case , by


(6)

This latter fact provides a remarkable proof of the Wallis Formula.


The polylogarithm identities lead to remarkable expressions. Ramanujan gave the polylogarithm identities

(7)


(8)


(9)


(10)


(11)

(Berndt 1994), and Bailey et al. show that
(12)


(13)


(14)


(15)


(16)

and

(17)


No general Algorithm is know for the integration of polylogarithms of functions.

See also Dilogarithm, Eulerian Number, Legendre's Chi-Function, Logarithmic Integral,Nielsen-Ramanujan Constants


References

Bailey, D.; Borwein, P.; and Plouffe, S. ``On the Rapid Computation of Various Polylogarithmic Constants.'' http://www.cecm.sfu.ca/~pborwein/PAPERS/P123.ps.

Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, pp. 323-326, 1994.

Lewin, L. Polylogarithms and Associated Functions. New York: North-Holland, 1981.

Lewin, L. (Ed.). Structural Properties of Polylogarithms. Providence, RI: Amer. Math. Soc., 1991.

Nielsen, N. Der Euler'sche Dilogarithms. Leipzig, Germany: Halle, 1909.

随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/4/27 21:02:42