请输入您要查询的字词:

 

单词 HomomorphicImageOfGroup
释义

homomorphic image of group


Theorem.  The homomorphic imagePlanetmathPlanetmathPlanetmath of a group is a group.  More detailed, if f is a homomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath from the group  (G,)  to the groupoidPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath(Γ,),  then the groupoid  (f(G),)  also is a group.  Especially, the isomorphic image of a group is a group.

Proof.  Let α,β,γ be arbitrary elements of the image f(G) and a,b,c some elements of G such that  f(a)=α,f(b)=β,f(c)=γ.  Then

αβ=f(a)f(b)=f(ab)f(G),

whence f(G) is closed underPlanetmathPlanetmath”, and we, in fact, can speak of a groupoid  (f(G),).

Secondly, we can calculate

(αβ)γ=(f(a)f(b))f(c)
=f(ab)f(c)
=f((ab)c)
=f(a(bc))
=f(a)f(bc)
=f(a)(f(b)f(c))
=α(βγ),

whence the associativity is in in the groupoid (f(G),).

Let e be the identity elementMathworldPlanetmath of  (G,)  and  f(e)=ε.  Then

εα=f(e)f(a)=f(ea)=f(a)=α,
αε=f(a)f(e)=f(ae)=f(a)=α,

and therefore ε is an identity element in f(G).

If  f(a-1)=α, then

αα=f(a)f(a-1)=f(aa-1)=f(e)=ε,
αα=f(a-1)f(a)=f(a-1a)=f(e)=ε.

Thus any element α of f(G) has in f(G) an inverseMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath.

Accordingly,  (f(G),)  is a group.

Remark 1.  If  (G,)  is AbelianMathworldPlanetmath, the same is true for  (f(G),).

Remark 2.  Analogically, one may prove that the homomorphic image of a ring is a ring.

Example.  If we define the mapping f from the group  (,+)  to the groupoid (9,)  by

f(n):=4n,

then f is homomorphism:

f(m+n)=4m+n=4m4n=f(m)f(n).

The image f() consists of powers of the residue class (http://planetmath.org/CongruencesPlanetmathPlanetmathPlanetmathPlanetmath) 4, which are

4,16=7,64=1.

These apparently form the cyclic groupMathworldPlanetmath of order 3.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 6:48:56