请输入您要查询的字词:

 

单词 IntegrationOfRationalFunctionOfSineAndCosine
释义

integration of rational function of sine and cosine


The integration task

R(sinx,cosx)𝑑x,(1)

where the integrand is a rational function of sinx and cosx, changes via the Weierstrass substitutionMathworldPlanetmath

tanx2=t(2)

to a form having an integrand that is a rational function of t.  Namely, since  x=2arctant,  we have

dx= 211+t2dt,(3)

and we can substitute

sinx=2t1+t2,cosx=1-t21+t2,(4)

getting

R(sinx,cosx)𝑑x= 2R(2t1+t2,1-t21+t2)dt1+t2.

Proof of the formulae (4):  Using the double angle formulas of sine and cosine and then dividing the numerators and the denominators by  cos2x2  we obtain

sinx=2sinx2cosx2sin2x2+cos2x2=2tanx21+tan2x2=2t1+t2,
cosx=cos2x2-sin2x2sin2x2+cos2x2=1-tan2x21+tan2x2=1-t21+t2.

Example.  The above formulae give from  dxsinx  the result

dxsinx=1+t22t211+t2𝑑t=dtt=ln|t|+C=ln|tanx2|+C

(which can also be expressed in the form -ln|cscx+cotx|+C; see the goniometric formulasPlanetmathPlanetmath).

Note 1.  The substitution (2) is sometimes called the ‘‘universal trigonometric substitution’’ (http://planetmath.org/UniversalTrigonometricSubstitution).  In practice, it often gives rational functions that are too complicated.  In many cases, it is more profitable to use other substitutions:

  • In the case  R(sinx)cosxdx  the substitution  sinx=t  is simpler.

  • Similarly, in the case  R(cosx)sinxdx  the substitution  cosx=t  is simpler.

  • If the integrand depends only on tanx, the substitution  tanx=t  is simpler.

  • If the integrand is of the form  R(sin2x,cos2x),  one can use the substitution  tanx=t; then
    cos2x=11+tan2x=11+t2,   sin2x=1-cos2x=t21+t2,   dx=dt1+t2.

Example.  The integration of  dxcos4x𝑑x  is of the last case:

dxcos4x𝑑x=1(cos2x)2𝑑x=(1+t2)2dt1+t2=(1+t2)𝑑t=t33+t+C=13tan3x+tanx+C.

Example.  The integralDlmfPlanetmathI=dxcos3x𝑑x=sec3xdx is a peculiar case in which one does not have to use the substitutions mentioned above, as integration by parts is a simpler method for evaluating this integral. Thus,

u=secxdu=secxtanxdx;dv=sec2xdxv=tanx.

Therefore,

I=sec3xdx=secxtanx-secxtan2xdx=secxtanx-secx(sec2x-1)𝑑x=secxtanx-I+secxdx,

and consequently

dxcos3x𝑑x=12(secxtanx+ln|secx+tanx|)+C.

Note 2.  There is also the ‘‘universal hyperbolic substitution’’ for integrating rational functions of hyperbolic sineMathworldPlanetmath and cosine:

tanhx2=t,dx=2dt1-t2,sinhx=2t1-t2,coshx=1+t21-t2

References

  • 1 Л. Д. Кдрячев:Математичецкии  анализ.  Издательство ‘‘ВүсшаяШкола’’. Москва (1970).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 21:09:15