请输入您要查询的字词:

 

单词 InvertibleElementsInABanachAlgebraFormAnOpenSet
释义

invertible elements in a Banach algebra form an open set


Theorem - Let 𝒜 be a Banach algebra with identity elementMathworldPlanetmath e and G(𝒜) be the set of invertible elements in 𝒜. Let Br(x) denote the open ball of radius r centered in x.

Then, for all xG(𝒜) we have that

Bx-1-1(x)G(𝒜)

and therefore G(𝒜) is open in 𝒜.

Proof : Let xG(𝒜) and yBx-1-1(x). We have that

e-x-1y=x-1x-x-1y=x-1(x-y)x-1x-y<x-1x-1-1=1

So, by the Neumann series (http://planetmath.org/NeumannSeriesInBanachAlgebras) we conclude that e-(e-x-1y) is invertiblePlanetmathPlanetmath,i.e. x-1yG(𝒜).

As G(𝒜) is a group we must have yG(𝒜).

So Bx-1-1(x)G(𝒜) and the theorem follows.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 21:19:34