请输入您要查询的字词:

 

单词 IrreduciblePolynomialsOverFiniteField
释义

irreducible polynomials over finite field


Theorem.  Over a finite fieldMathworldPlanetmath F, there exist irreducible polynomialsMathworldPlanetmath of any degree.

Proof.  Let n be a positive integer, p be the characteristic of F, 𝔽p be the prime subfieldMathworldPlanetmath, and pr be the order (http://planetmath.org/FiniteField) of the field F.  Since pr-1 is a divisorMathworldPlanetmathPlanetmath of prn-1, the zeros of the polynomialMathworldPlanetmathPlanetmathPlanetmath Xpr-X form in  G:=𝔽prn  a subfieldMathworldPlanetmath isomorphic to F.  Thus, one can regard F as a subfield of G.  Because

[G:F]=[G:𝔽p][F:𝔽p]=rnr=n,

the minimal polynomial of a primitive elementMathworldPlanetmathPlanetmath of the field extension G/F is an irreducible polynomial of degree n in the ring F[X].

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/3 14:21:37