请输入您要查询的字词:

 

单词 ListOfAllImaginaryQuadraticExtensionsWhoseRingOfIntegersIsAPID
释义

list of all imaginary quadratic extensions whose ring of integers is a PID


Gauss conjectured that for any Δ<0, Δ0,1(mod4), then 𝒞Δ=1 precisely when

Δ=-3,-4,-7,-8,-11,-12,-16,-19,-27,-28,-43,-67,-163

In fact, he believed that as Δ-,Δ0,1(mod4), so does the number of classes of (primitive positive integral binary quadratic) forms with http://planetmath.org/node/IntegralBinaryQuadraticFormsdiscriminantPlanetmathPlanetmathPlanetmath Δ.

It is relatively easy to show that the only Δ0(mod4) with this property are the ones in this list; that proof is given in an addendum to this article.

However, proving the remainder of Gauss’ hypotheses, regarding the odd values in the list, proved significantly harder. In the first half of the 20th century, Siegel showed that there was at most one such value beyond what Gauss had found. Heegner, Stark, and Baker showed, about 30 years later, that there are in fact no more ([2],[3],[4]).

Thus given an imaginary quadratic extension K, it follows that the ring of integersMathworldPlanetmath of K, denoted 𝒪K, is a PID if and only if the class groupMathworldPlanetmath of K is trivial if and only if there is only one class of primitive quadratic formsMathworldPlanetmath of the appropriate http://planetmath.org/node/DiscriminantOfANumberFielddiscriminant dK if and only if dK is in the set above. So in particular, there are a finite number of imaginary quadratic extensions of whose ring of integers is a PID (and hence a UFD).

The values of Δ above that correspond to 𝒪K for some K are:

Δ=dKK𝒪K
-3(-3)[1+-32]
-4(-1)[-1]
-7(-7)[1+-72]
-8(-2)[-2]
-11(-11)[1+-112]
-19(-19)[1+-192]
-43(-43)[1+-432]
-67(-67)[1+-672]
-163(-163)[1+-1632]

We therefore get

Theorem 1.

(Stark-Heegner)
If d<0, then the class numberMathworldPlanetmath of Q(d) is equal to 1 if and only if

d=-1,-2,-3,-7,-11,-19,-43,-67, or -163

(where d=-1,-2 correspond to Δ=-4,-8 and otherwise d=Δ).

How about the other four values Δ=-12,-16,-27,-28? Each of these corresponds to a non-maximal http://planetmath.org/node/OrderInAnAlgebraorder in a quadratic extension (i.e. a proper subring of the ring of algebraic integers). Specifically, we have

Δ=-12[21+-32]=[-3]𝒪K for K=(-3)
Δ=-16[2-1]𝒪K for K=(-1)
Δ=-27[31+-32]𝒪K for K=(-3)
Δ=-28[21+-72]=[-7]𝒪K for K=(-7)

Note that this does not mean that these rings are PIDs, since the invertible ideals in an order that is not the entire ring of integers do not include all ideals.

References

  • 1 Cox, D.A. Primes of the Form x2+ny2: Fermat, Class Field Theory, and Complex MultiplicationMathworldPlanetmath, Wiley 1997.
  • 2 Heegner, K., Diophantische Analysis und Modulfunktionen, Math. Zeit., 56 (1952), pp. 227-253.
  • 3 Stark, H.M., A completePlanetmathPlanetmathPlanetmath determination of the complex quadratic fields with class number one, Mich. Math. J., 14 (1967), pp. 1-27.
  • 4 Baker, A., Linear forms in the logarithms of algebraic numbersMathworldPlanetmath, Mathematika, 13 (1966), pp. 204-216.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/25 1:29:52