请输入您要查询的字词:

 

单词 ProofOfCauchySchwarzInequalityForRealNumbers
释义

proof of Cauchy-Schwarz inequality for real numbers


The version of the Cauchy-Schwartz inequality we want to prove is

(k=1nakbk)2k=1nak2k=1nbk2,

where the ak and bk are real numbers, with equality holding only in thecase of proportionality, ak=λbk for some real λ for all k.

The proof is by direct calculation:

k=1nak2k=1nbk2-(k=1nakbk)2=k,l=1nak2bl2-akbkalbl
=k,l=1n12(ak2bl2+al2bk2)-(akbl)(albk)
=12k,l=1n(akbl)2-2(akbl)(albk)+(albk)2
=12k,l=1n(akbl-albk)2
0.

The above identity implies that the Cauchy-Schwarz inequality holds.Moreover, it is an equality only when

akbl-albk=0akbk=albl or bkak=blal or ak=bk=0,

for all k and l. In other words, equality holds only when ak=λbk for all k for some real number λ.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/5 5:21:15