请输入您要查询的字词:

 

单词 ProofOfCayleysTheorem
释义

proof of Cayley’s theorem


Let G be a group, and let SG be the permutation groupMathworldPlanetmath of the underlying set G. For each gG, define ρg:GG by ρg(h)=gh. Then ρg is invertible with inverseMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath ρg-1, and so is a permutationMathworldPlanetmath of the set G.

Define Φ:GSG by Φ(g)=ρg. Then Φ is a homomorphismPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath, since

(Φ(gh))(x)=ρgh(x)=ghx=ρg(hx)=(ρgρh)(x)=((Φ(g))(Φ(h)))(x)

And Φ is injectivePlanetmathPlanetmath, since if Φ(g)=Φ(h) then ρg=ρh, so gx=hx for all xX, and so g=h as required.

So Φ is an embedding of G into its own permutation group. If G is finite of order n, then simply numbering the elements of G gives an embedding from G to Sn.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 8:23:37