请输入您要查询的字词:

 

单词 ProofOfEulerFermatTheoremUsingLagrangesTheorem
释义

proof of Euler-Fermat theorem using Lagrange’s theorem


Theorem.

Given a,nZ, aϕ(n)1(modn) when 𝑔𝑐𝑑(a,n)=1, where ϕ is the Euler totient function.

Proof.

We will make use of Lagrange’s Theorem: Let G be a finite groupMathworldPlanetmath and let H be a subgroupMathworldPlanetmathPlanetmath of G. Then the order of H divides the order of G.

Let G=(/n)× and let H be the multiplicative subgroup of G generated by a (so H={1,a,a2,}). The fact that gcd(a,n)=1 ensures that aG. Notice that the order of H, h=|H| is also the order of a, i.e. the smallest natural numberMathworldPlanetmath n>1 such that an is the identityPlanetmathPlanetmathPlanetmath in G, i.e. ah1modn. Also, recall that the order of G=(/n)× is ϕ(n), where ϕ is the Euler ϕ function.

By Lagrange’s theorem h|G|=ϕ(n), so ϕ(n)=hm for some m. Thus:

aϕ(n)=(ah)m1m1modn

as claimed.∎

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 4:46:15