请输入您要查询的字词:

 

单词 ProofOfFactorTheorem
释义

proof of factor theorem


Suppose that f(x) is a polynomialPlanetmathPlanetmath with real or complex coefficients of degree n-1. Since f is a polynomial, it is infinitely differentiableMathworldPlanetmathPlanetmath. Therefore, f has a Taylor expansionMathworldPlanetmath about a. Since f(n)(x)=0, the terminates after the n-1th term. Also, the nth remainder of the Taylor series vanishes; i.e. (http://planetmath.org/Ie), Rn(x)=f(n)(y)n!xn=0. Thus, the function is equal to its Taylor series. Hence,

f(x)=k=0n-1f(k)(a)k!(x-a)k=f(a)+k=1n-1f(k)(a)k!(x-a)k=f(a)+(x-a)k=1n-1f(k)(a)k!(x-a)k-1=f(a)+(x-a)k=0n-2f(k+1)(a)(k+1)!(x-a)k.

If f(a)=0, then f(x)=(x-a)k=0n-2f(k+1)(a)(k+1)!(x-a)k. Thus, f(x)=(x-a)g(x), where g(x) is the polynomial k=0n-2f(k+1)(a)(k+1)!(x-a)k. Hence, x-a is a factor of f(x).

Conversely, if x-a is a factor of f(x), then f(x)=(x-a)g(x) for some polynomial g(x). Hence, f(a)=(a-a)g(a)=0.

It follows that x-a is a factor of f(x) if and only if f(a)=0.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/5 4:54:10