请输入您要查询的字词:

 

单词 ProofOfRieszRepresentationTheoremForSeparableHilbertSpaces
释义

proof of Riesz representation theorem for separable Hilbert spaces


Let {𝐞0,𝐞1,𝐞2,} be an orthonormal basisMathworldPlanetmath for the Hilbert spaceMathworldPlanetmath . Define

ci=f(𝐞i)   and   v=k=0nc¯i𝐞i.

The linear map (http://planetmath.org/ContinuousLinearMapping) f is continuousMathworldPlanetmath if and only if it is bounded, i.e. there exists a constant C such that |f(v)|Cv. Then

f(v)=k=0nc¯kf(𝐞k)=k=0n|ck|2Ck=0n|ck|2.

Simplifying, k=0n|ck|2C2. Hence k=0ck𝐞k converges to an element u in H.

For every basis element, f(𝐞i)=ck=u,𝐞i. By linearity, it will also be true that

f(v)=u,v if v is a finite superposition of basis vectors.

Any vector in the Hilbert space can be written as the limit of a sequence of finite superpositions of basis vectors hence, by continuity,

f(v)=u,v for all v

It is easy to see that u is unique. Suppose there existed two vectors u1 and u2 such that f(v)=u1,v=u2,v. Then u1-u2,v=0 for all vectors v. But then, u1-u2,u1-u2=0 which is only possible if u1-u2=0, i.e. if u1=u2.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 21:21:22