请输入您要查询的字词:

 

单词 ProofOfTaylorsTheorem
释义

proof of Taylor’s Theorem


Let f(x),a<x<b be a real-valued, n-times differentiablefunction, and let a<x0<b be a fixed base-point. We will show thatfor all xx0 in the domain of thefunction, there exists a ξ, strictly between x0 and x suchthat

f(x)=k=0n-1f(k)(x0)(x-x0)kk!+f(n)(ξ)(x-x0)nn!.

Fix xx0 and let R be the remainder defined by

f(x)=k=0n-1f(k)(x0)(x-x0)kk!+R(x-x0)nn!.

Next, define

F(ξ)=k=0n-1f(k)(ξ)(x-ξ)kk!+R(x-ξ)nn!,a<ξ<b.

We then have

F(ξ)=f(ξ)+k=1n-1(f(k+1)(ξ)(x-ξ)kk!-f(k)(ξ)(x-ξ)k-1(k-1)!)-R(x-ξ)n-1(n-1)!
=f(n)(ξ)(x-ξ)n-1(n-1)!-R(x-ξ)n-1(n-1)!
=(x-ξ)n-1(n-1)!(f(n)(ξ)-R),

because the sum telescopes.Since, F(ξ) is a differentiable function, and sinceF(x0)=F(x)=f(x), Rolle’s Theorem imples that there exists a ξ lyingstrictly between x0 and x such that F(ξ)=0. It follows thatR=f(n)(ξ), as was to be shown.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/30 13:46:42