proof that normal distribution is a distribution∫-∞∞e-(x-μ)22σ2σ2π𝑑x=(∫-∞∞e-(x-μ)22σ2σ2π𝑑x)2=∫-∞∞e-(x-μ)22σ2σ2π𝑑x∫-∞∞e-(y-μ)22σ2σ2π𝑑y=∫-∞∞∫-∞∞e-(x-μ)2+(y-μ)22σ2σ22π𝑑x𝑑ySubstitute x′=x-μ and y′=y-μ. Since the bounds are infinite, they do not change, and dx′=dx and dy′=dy. Thus, we have∫-∞∞∫-∞∞e-(x-μ)2+(y-μ)22σ2σ22π𝑑x𝑑y=∫-∞∞∫-∞∞e-(x′)2+(y′)22σ2σ22π𝑑x′𝑑y′.Converting to polar coordinates, we obtain∫-∞∞∫-∞∞e-(x′)2+(y′)22σ2σ22π𝑑x′𝑑y′=∫0∞∫02πre-r22σ2σ22π𝑑r𝑑θ=∫02πdθ2π∫0∞re-r22σ2σ2𝑑r=θ2π|02π1σ2∫0∞re-r22σ2𝑑r=2π2πσ2σ2(-e-r22σ2)|0∞=11=1.