请输入您要查询的字词:

 

单词 PropertiesOfOrthogonalPolynomials
释义

properties of orthogonal polynomials


A countable system of orthogonal polynomials

p0(x),p1(x),p2(x),(1)

on an interval  [a,b],  where a inner product of two functionsMathworldPlanetmath

(f,g):=abf(x)g(x)W(x)𝑑x

is defined with respect to a weighting function W(x), satisfies the orthogonality condition (http://planetmath.org/OrthogonalVectors)

(pm,pn)= 0always whenmn.

One also requires that

deg(pn(x))=nfor all n.

Such a system (1) may be used as basis for the vector spaceMathworldPlanetmath of functions defined on  [a,b], i.e. certain such functions f may be expanded as a series (http://planetmath.org/FunctionSeries)

f(x)=c0p0(x)+c1p1(x)+c2p2(x)+

where the coefficients cn have the expression

cn=abf(x)pn(x)W(x)𝑑x.

Other properties

  • The basis property of the system (1) comprises that any polynomial P(x) of degree n can be uniquely expressed as a finite linear combinationMathworldPlanetmath

    P(x)=c0p0(x)+c1p1(x)++cnpn(x).
  • Every member pn(x) of (1) is orthogonalMathworldPlanetmath to any polynomial P(x) of degree less than n.

  • There is a recurrence relation

    pn+1(x)=(anx+bn)pn(x)+cnpn-1(x)

    enabling to determine a .

  • The zeros of pn(x) are all real and belong to the open interval  (a,b);  between two of those zeros there are always zeros of pn+1(x).

  • The Sturm–Liouville differential equationMathworldPlanetmath

    Q(x)p′′+L(x)p+λp= 0,(2)

    where Q(x) is a polynomial of at most degree 2 and L(x) a linear polynomial, gives under certain conditions, as http://planetmath.org/node/8719solutions p a system of orthogonal polynomials p0,p1,  corresponding suitable values (eigenvaluesMathworldPlanetmathPlanetmathPlanetmathPlanetmath) λ0,λ1,  of the parametre λ.  Those satisfy the Rodrigues formulaPlanetmathPlanetmath

    pn(x)=knW(x)dndxn(W(x)[Q(x)]n),

    where kn is a constant and

    W(x):=1Q(x)eL(x)Q(x)𝑑x.

    The classical Chebyshev (http://planetmath.org/ChebyshevPolynomial), Hermite (http://planetmath.org/HermitePolynomials), Laguerre (http://planetmath.org/LaguerrePolynomial), and Legendre polynomialsDlmfDlmfMathworld all satisfy an equation (2).

[Not ready . . .]

Titleproperties of orthogonal polynomials
Canonical namePropertiesOfOrthogonalPolynomials
Date of creation2013-03-22 19:05:34
Last modified on2013-03-22 19:05:34
Ownerpahio (2872)
Last modified bypahio (2872)
Numerical id12
Authorpahio (2872)
Entry typeTopic
Classificationmsc 42C05
Classificationmsc 33D45
Related topicHilbertSpace
Related topicTopicsOnPolynomials
Related topicIndexOfSpecialFunctions
Related topicOrthogonalityOfLaguerrePolynomials
Related topicOrthogonalityOfChebyshevPolynomials
DefinesRodrigues formula
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/25 7:17:46