请输入您要查询的字词:

 

单词 RanknullityTheorem
释义

rank-nullity theorem


Let V and W be vector spacesMathworldPlanetmath over the same field.If ϕ:VW is a linear mapping, then

dimV=dim(kerϕ)+dim(imϕ).

In other words, the dimensionPlanetmathPlanetmath of Vis equal to the sum (http://planetmath.org/CardinalArithmetic)of the rank (http://planetmath.org/RankLinearMapping) and nullityMathworldPlanetmath of ϕ.

Note that if U is a subspacePlanetmathPlanetmathPlanetmath of V, then this(applied to the canonical mapping VV/U) says that

dimV=dimU+dim(V/U),

that is,

dimV=dimU+codimU,

where codim denotes codimension.

An alternative way of stating the rank-nullity theoremMathworldPlanetmath isby saying that if

0UVW0

is a short exact sequenceMathworldPlanetmathPlanetmath of vector spaces, then

dim(V)=dim(U)+dim(W).

In fact, if

0V1Vn0

is an exact sequenceMathworldPlanetmathPlanetmathPlanetmathPlanetmath of vector spaces, then

i=1n/2V2i=i=1n/2V2i-1,

that is, the sum of the dimensions of even-numbered termsis the same as the sum of the dimensions of the odd-numbered terms.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 16:04:17