请输入您要查询的字词:

 

单词 ApplicationOfLogarithmSeries
释义

application of logarithm series


The integrand of the improper integral

I:=01ln(1+x)x𝑑x(1)

is not defined at the lower limitMathworldPlanetmath 0.  However, from the Taylor seriesMathworldPlanetmath expansion

ln(1+x)=x-x22+x33-x44+-  (-1<x1)

of the natural logarithmMathworldPlanetmathPlanetmathPlanetmath we obtain the expansion of the integrand

ln(1+x)x= 1-x2+x23-x34+-  (-1<x<0,  0<x1)

whence

limx0ln(1+x)x= 1.(2)

This implies that the integrand of (1) is boundedPlanetmathPlanetmath on the interval  [0, 1] and also continuousMathworldPlanetmath, if we think that (2) defines its value at  x=0.  Accordingly, the integrand is Riemann integrablePlanetmathPlanetmath on the interval, and we can determine the improper integral by integrating termwise:

I=01(1-x2+x23-x34+-)dx
=/01(x-x222+x332-x442+-)
= 1-122+132-142+-

By the entry on Dirichlet eta functionMathworldPlanetmath at 2 (http://planetmath.org/ValueOfDirichletEtaFunctionAtS2), the sum of the obtained series is  η(2)=π212.  Thus we have the result

01ln(1+x)x𝑑x=π212.(3)

Similarly, using the series

ln(1-x)=-x-x22-x33-x44-  (-1x<1)

and the result in the entry Riemann zeta functionDlmfDlmfMathworldPlanetmath at 2 (http://planetmath.org/ValueOfTheRiemannZetaFunctionAtS2), one can calculate that

01ln(1-x)x𝑑x=-π26.(4)
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/24 23:27:36