请输入您要查询的字词:

 

单词 SqueezeRule
释义

squeeze rule


Squeeze rule for sequences

Let f,g,h: be three sequences of real numbers such that

f(n)g(n)h(n)

for all n. If limnf(n) and limnh(n) existand are equal, say to a, then limng(n) also exists andequals a.

The proof is fairly straightforward. Let ϵ be any real number >0.By hypothesisMathworldPlanetmathPlanetmath there exist M,N such that

|a-f(n)|<ϵ for all nM
|a-h(n)|<ϵ for all nN

Write L=max(M,N). For nL we have

  • if g(n)a:

    |g(n)-a|=g(n)-ah(n)-a<ϵ
  • else g(n)<a and:

    |g(n)-a|=a-g(n)a-f(n)<ϵ

So, for all nL, we have |g(n)-a|<ϵ, which is the desired conclusionMathworldPlanetmath.

Squeeze rule for functions

Let f,g,h:S be three real-valued functions on a neighbourhoodS of a real number b, such that

f(x)g(x)h(x)

for all xS-{b}. If limxbf(x) and limxbh(x)exist and are equal, say to a, then limxbg(x) also existsand equals a.

Again let ϵ be an arbitrary positive real number. Find positive realsα and β such that

|a-f(x)|<ϵ whenever 0<|b-x|<α
|a-h(x)|<ϵ whenever 0<|b-x|<β

Write δ=min(α,β). Now, for any x such that|b-x|<δ, we have

  • if g(x)a:

    |g(x)-a|=g(x)-ah(x)-a<ϵ
  • else g(x)<a and:

    |g(x)-a|=a-g(x)a-f(x)<ϵ

and we are done.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 5:18:15