请输入您要查询的字词:

 

单词 ASufficientConditionForConvergenceOfIntegral
释义

a sufficient condition for convergence of integral


Suppose that the real function f is positive and continuousMathworldPlanetmath on the interval  [a,).  A sufficient condition for the convergence (http://planetmath.org/ConvergentIntegral) of the improper integral

af(x)𝑑x(1)

is that

limxf(x+1)f(x)=q< 1.(2)

Proof.  Assume that the condition (2) is in .  For an indirect proof (http://planetmath.org/ReductioAdAbsurdum), make the antithesis that the integral (http://planetmath.org/RiemannIntegral) (1) diverges (http://planetmath.org/DivergentIntegral).

Because of the positiveness, we have  af(x)𝑑x=.  We can use l’Hôpital’s rule (http://planetmath.org/LHpitalsRule):

limcacf(x+1)𝑑xacf(x)𝑑x=limcf(c+1)f(c).

Using the http://planetmath.org/node/11373substitution  x+1=t  we get

acf(x+1)𝑑x=a-1c-1f(t)𝑑t=a-1af(t)𝑑t+acf(t)𝑑t-c-1cf(t)𝑑t,

and dividing this equation by acf(t)𝑑t and taking limits (http://planetmath.org/ImproperLimits) yield (f is bounded!)

1>q=limcacf(x+1)𝑑xacf(x)𝑑x= 0+1-0= 1.

This contradictory result shows that the antithesis is wrong; thus (1) must be convergentMathworldPlanetmathPlanetmath (http://planetmath.org/ConvergentIntegral).

Note.  The condition (2) is not necessary for the convergence of (1).  This is seen e.g. in the case of the converging of (2) equals 1.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 10:20:17