请输入您要查询的字词:

 

单词 CholeskyDecomposition
释义

Cholesky decomposition


1 Cholesky Decomposition

A symmetricPlanetmathPlanetmath and positive definite matrix can be efficiently decomposed into a lower and upper triangular matrixMathworldPlanetmath. For a matrix of any type, this is achieved by the LU decompositionMathworldPlanetmath which factorizes A=LU. If A satisfies the above criteria, one can decompose more efficiently into A=LLT where L is a lower triangular matrix with positive diagonal elements. L is called the Cholesky triangle.

To solve Ax=b, one solves first Ly=b for y, and then LTx=y for x.

A variant of the Cholesky decomposition is the form A=RTR , where R is upper triangular.

Cholesky decomposition is often used to solve the normal equationsMathworldPlanetmath in linear least squares problems; they give ATAx=ATb , in which ATA is symmetric and positive definitePlanetmathPlanetmath.

To derive A=LLT, we simply equate coefficients on both sides of the equation:

[a11a12a1na21a22a2na31a32a3nan1an2ann]=[l1100l21l220ln1ln2lnn][l11l21ln10l22ln200lnn]

Solving for the unknowns (the nonzero ljis), for i=1,,n and j=i-1,,n, we get:

lii=(aii-k=1i-1lik2)
lji=(aji-k=1i-1ljklik)/lii

Because A is symmetric and positive definite, the expression under the square root is always positive, and all lij are real.

References

  • 1 Originally from The Data Analysis Briefbook(http://rkb.home.cern.ch/rkb/titleA.htmlhttp://rkb.home.cern.ch/rkb/titleA.html)
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 23:08:08