请输入您要查询的字词:

 

单词 WaringsProblem
释义

Waring’s problem


Waring asked whether it is possible to represent every natural numberMathworldPlanetmath as a sum of bounded (http://planetmath.org/BoundedInterval) number of nonnegative k’th powers, that is, whether the set {nkn+} is an additive basis (http://planetmath.org/Basis2). He was led to this conjecture by Lagrange’s theorem (http://planetmath.org/LagrangesFourSquareTheorem) which asserted that every natural number can be represented as a sum of four squares.

Hilbert [1] was the first to prove the conjecture for all k. In his paper he did not give an explicit bound on g(k), the number of powers needed, but later it was proved that

g(k)=2k+(32)k-2

except possibly finitely many exceptional k, none of which are known.

Wooley[4], improving the result of Vinogradov[3], proved that the number of k’th powers needed to represent all sufficiently large integers is

G(k)k(lnk+lnlnk+O(1)).

References

  • 1 David Hilbert. Beweis für Darstellbarkeit der ganzen Zahlen durch eine festeAnzahl n-ter Potenzen (Waringsches Problem). Math. Ann., pages 281–300, 1909. Available electronically fromhttp://gdz.sub.uni-goettingen.de/en/index.htmlGDZ.
  • 2 Robert C. Vaughan. The Hardy-Littlewood method. Cambridge University Press, 1981. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0868.11046Zbl 0868.11046.
  • 3 I. M. Vinogradov. On an upper bound for G(n). Izv. Akad. Nauk SSSR. Ser. Mat., 23:637–642, 1959. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0089.02703Zbl 0089.02703.
  • 4 Trevor D. Wooley. Large improvements in Waring’s problem. Ann. Math, 135(1):131–164, 1992. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0754.11026Zbl 0754.11026. http://links.jstor.org/sici?sici=0003-486X%28199201%292%3A135%3A1%3C131%3ALIIWP%3E2.0.CO%3B2-OAvailable online at http://www.jstor.orgJSTOR.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 11:08:03