请输入您要查询的字词:

 

单词 DirectSumOfHermitianAndSkewHermitianMatrices
释义

direct sum of Hermitian and skew-Hermitian matrices


In this example, we show that any square matrixMathworldPlanetmath with complexentries can uniquely be decomposed into the sum of one Hermitian matrixMathworldPlanetmath andone skew-Hermitian matrix. A fancy way to say this is thatcomplex square matrices is the direct sum of Hermitian and skew-Hermitianmatrices.

Let us denote the vector spaceMathworldPlanetmath (over ) ofcomplex square n×n matrices by M.Further, we denote by M+ respectively M- the vectorsubspaces of Hermitian and skew-Hermitian matrices.We claim that

M=M+M-.(1)

Since M+ and M- are vector subspaces of M, it is clearthat M++M- is a vector subspace of M. Conversely, supposeAM. We can then define

A+=12(A+A),
A-=12(A-A).

Here A=A¯T, and A¯ is the complex conjugateMathworldPlanetmath of A,and AT is the transposeMathworldPlanetmath of A. It follows that A+ is Hermitianand A- is anti-Hermitian. Since A=A++A-, any elementin M can be written asthe sum of one element in M+ and one element in M-. Let us checkthat this decomposition is unique. If AM+M-, thenA=A=-A, so A=0.We have established equation 1.

Special cases

  • In the special case of 1×1 matrices, we obtain thedecomposition of a complex numberMathworldPlanetmathPlanetmath into its real and imaginary componentsMathworldPlanetmathPlanetmath.

  • In the special case of real matrices, we obtain the decomposition ofa n×n matrix into a symmetric matrixMathworldPlanetmath and anti-symmetric matrix.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 7:20:42