请输入您要查询的字词:

 

单词 EulerProduct
释义

Euler product


If f is a multiplicative functionMathworldPlanetmath, then

n=1f(n)=p is prime(1+f(p)+f(p2)+)(1)

provided the sum on the left converges absolutely. The producton the right is called the Euler productMathworldPlanetmath for the sum on theleft.

Proof of (1).

Expand partial products on right of (1) toobtain by fundamental theorem of arithmeticMathworldPlanetmath

p<y(1+f(p)+f(p2)+)=k1f(p1k1)k2f(p2k2)ktf(ptkt)
=k1,k2,,ktf(p1k1)f(p2k2)f(ptkt)
=k1,k2,,ktf(p1k1p2k2ptkt)
=P+(n)<yf(n)

where p1,p2,,pt are all the primes between 1 and y, and P+(n) denotes the largest prime factor of n. Sinceevery natural number less than y has no factors exceeding y we havethat

|n=1f(n)-P+(n)<yf(n)|n=y|f(n)|

which tends to zero as y.∎

Examples

  • If the functionMathworldPlanetmath f is defined on prime powers byf(pk)=1/pk for all p<x and f(pk)=0 for all px,then allows one to estimate p<x(1+1/(p-1))

    p<x(1+1p-1)=p<x(1+1p+1p2+)=P+(n)<x1n>n<x1n>lnx.

    One of the consequences of this formula is that there areinfinitely many primes.

  • The Riemann zeta functionDlmfDlmfMathworldPlanetmath is defined by the means of theseries

    ζ(s)=n=1n-s  for s>1.

    Since the series converges absolutely, the Euler product for the zeta functionMathworldPlanetmath is

    ζ(s)=p11-p-s  for s>1.

    If we set s=2, then on the one hand ζ(s)=n1/n2 isπ2/6 (proof ishere (http://planetmath.org/ValueOfTheRiemannZetaFunctionAtS2)), anirrational number, and on the other hand ζ(2) is a product of rational functions of primes. This yields yet another proof of infinitude ofprimes.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/3 20:53:25