请输入您要查询的字词:

 

单词 EulerProductFormula
释义

Euler product formula


Theorem (Euler).  If  s>1,  the infinite product

p11-1ps(1)

where p runs the positivePlanetmathPlanetmath rational primes, converges to the sum of the over-harmonic series

n=11ns=ζ(s).(2)

Proof.  Denote the sequenceMathworldPlanetmath of prime numbers by p1<p2<p3<  For any  s>0,  we can form convergentMathworldPlanetmathPlanetmath geometric seriesMathworldPlanetmath

11-1p1s= 1+1p1s+1p12s+=ν1=01p1ν1s,
11-1p2s= 1+1p2s+1p22s+=ν2=01p2ν2s.

Since these series are absolutely convergent, their product (see multiplication of series) may be written as

11-1p1s11-1p2s=ν1,ν2=01p1ν1s1p2ν2s=ν1,ν2=01(p1ν1p2ν2)s

where ν1 and ν2 independently on each other run all nonnegative integers.  This equation can be generalised by induction to

ν=1k11-1pνs=ν1,ν2,,νk=01(p1ν1p2ν2pkνk)s(3)

for  s>0  and for arbitrarily great k; the exponents  ν1,ν2,,νk  run independently all nonnegative integers.

Because the prime factorizationMathworldPlanetmath of positive integers is unique (http://planetmath.org/FundamentalTheoremOfArithmetic), we can rewrite (3) as

ν=1k11-1pνs=(n)1ns,(4)

where n runs all positive integers not containing greater prime factorsMathworldPlanetmath than pk.  Then the inequality

n=1pk1ns<ν=1k11-1pνs,(5)

holds for every k, since all the terms  1,1p1s,,1pks  are in the series of the right hand side of (4).  On the other hand, this series contains only a part of the terms of (2).  Thus, for  s>1,  the product (3) is less than the sum ζ(s) of the series (2), and consequently

n=1pk1ns<ν=1k11-1pνs<ζ(s).(6)

Letting  k,  we have  pk,  and the sum on the left hand side of (6) tends to the limit ζ(s), therefore also tends the product (3).  Hence we get the limit equation

p11-1ps=ζ(s)  (s>1).(7)

References

  • 1 E. Lindelöf: Differentiali- ja integralilaskuja sen sovellutukset III.2.  Mercatorin Kirjapaino Osakeyhtiö, Helsinki (1940).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/3 19:47:04