请输入您要查询的字词:

 

单词 EulersSubstitutionsForIntegration
释义

Euler’s substitutions for integration


In the integration task

R(x,ax2+bx+c)𝑑x,

where the integrand is a rational functionMathworldPlanetmath of x and ax2+bx+c, the integrand can be changed to a rational function of a new variableMathworldPlanetmath t by using the following substitutions of Euler.

  • The first substitution of Euler.  If  a>0,  we may write

    ax2+bx+c=±xa+t.(1)

    When we take a with the minus sign, then

    ax2+bx+c=ax2-2xta+t2,

    from which we get the expression

    x=t2-cb+2ta;

    thus also dx is expressible rationally via t. We have

    ax2+bx+c=-xa+t=c-t2b+2taa+t.
  • The second substitution of Euler.  If  c>0,  we take

    ax2+bx+c=xt±c.(2)

    With the minus sign we obtain, similarly as above,

    x=2tc+bt2-a.
  • The third substitution of Euler.  If the polynomialMathworldPlanetmathPlanetmath ax2+bx+c has the real zeros α and β, we may chose

    ax2+bx+c=(x-α)t.(3)

    Now

    ax2+bx+c=a(x-α)(x-β)=(x-α)2t2,

    whence  a(x-β)=(x-α)t2. This gives the expression

    x=aβ-αt2a-t2.

    As in the preceding cases, we can express dx and ax2+bx+c rationally via t.

Examples.

1. In the integral dxx2+c we can use the first substitution:  x2+c=-x+t;  then  x2+c=x2-2xt+t2  and thus

x=t2-c2t,dx=t2+c2t2dt,x2+c=-t2-c2t+t=t2+c2t.

Accordingly we obtain

dxx2+c=t2+c2t2dtt2+c2t=dtt=ln|t|+C=ln|x+x2+c|+C.

Especially the cases  c=±1  give the formulas

dxx2+1=arsinhx+C,dxx2-1=arcoshx+C(x>1).

2. The integral c2-x2x𝑑x is needed in deriving the equation of the tractrix. We use for integrating the second substitution c2-x2=xt-c;  then  c2-x2=x2t2-2cxt+c2, which implies

x=2ctt2+1,dx=2c(1-t2)dt(1+t2)2,c2-x2=2ct2t2+1-c=c(t2-1)t2+1.

We then obtain

c2-x2x𝑑x=-c(1-t2)2t(1+t2)2𝑑t=c(4t(1+t2)2-1t)𝑑t=-2c1+t2-cln|t|+C1.

The equation tying x and t gives  2c1+t2=xt  and  t=c+c2-x2x,  whence

c2-x2x𝑑x=-x2c+c2-x2-clnc+c2-x2x+C1=-c+c2-x2-clnc+c2-x2x+C1,

i.e.

c2-x2x𝑑x=c2-x2-clnc+c2-x2x+C.

3. In the integral dxx2+3x-4, the radicand is (x+4)(x-1). Using the third substitution of Euler, we take  x2+4x-3=(x+4)t. This simplifies to  x-1=(x+4)t2. Then we get

x=1+4t21-t2,dx=10t(1-t2)2dt,x2+3x-4=(1+4tr1-t2+4)t=5t1-t2.

And we obtain

dxx2+3x-4=10t(1-t2)(1-t2)25t𝑑t=21-t2𝑑t=ln|1+t1-t|+C=ln|1+x-1x+41-x-1x+4|+C
=ln|x+4+x-1x+4-x-1|+C.

References

  • 1 N. Piskunov: Diferentsiaal- ja integraalarvutus kõrgematele tehnilistele õppeasutustele. Viies, täiendatud trükk.  Kirjastus “Valgus”, Tallinn (1965).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 17:50:03