请输入您要查询的字词:

 

单词 FiniteIntersectionProperty
释义

finite intersection property


A collectionMathworldPlanetmath 𝒜={Aα}αI of subsets of a set X is said to have the finite intersection property, abbreviated f.i.p., if every finite subcollection {A1,A2,,An} of 𝒜 satisifes i=1nAi.

The finite intersection property is most often used to give the following http://planetmath.org/node/3769equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath condition for the http://planetmath.org/node/503compactness of a topological spaceMathworldPlanetmath (a proof of which may be found http://planetmath.org/node/4181here):

Proposition.

A topological space X is compactPlanetmathPlanetmath if and only if for every collection C={Cα}αJ of closed subsets of X having the finite intersection property, αJCα.

An important special case of the preceding is that in which 𝒞 is a countableMathworldPlanetmath collection of non-empty nested sets, i.e., when we have

C1C2C3.

In this case, 𝒞 automatically has the finite intersection property, and if each Ci is a closed subset of a compact topological space, then, by the propositionPlanetmathPlanetmathPlanetmath, i=1Ci.

The f.i.p. characterizationMathworldPlanetmath of may be used to prove a general result on the uncountability of certain compact Hausdorff spaces, and is also used in a proof of TychonoffPlanetmathPlanetmath’s Theorem.

References

  • 1 J. Munkres, TopologyMathworldPlanetmath, 2nd ed. Prentice Hall, 1975.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 5:16:55