请输入您要查询的字词:

 

单词 FrattiniSubgroupOfAFiniteGroupIsNilpotentThe
释义

Frattini subgroup of a finite group is nilpotent, the


The Frattini subgroupMathworldPlanetmath of a finite groupMathworldPlanetmath is nilpotent (http://planetmath.org/NilpotentGroup).

Proof.

Let Φ(G) denote the Frattini subgroup of a finite group G.Let S be a Sylow subgroup of Φ(G).Then by the Frattini argument, G=Φ(G)NG(S)=Φ(G)NG(S).But the Frattini subgroup is finite and formed of non-generators,so it follows that G=NG(S)=NG(S).Thus S is normal in G, and therefore normal in Φ(G).The result now follows, as any finite group whose Sylow subgroups are all normal is nilpotent (http://planetmath.org/ClassificationOfFiniteNilpotentGroups).∎

In fact, the same proof shows that for any group G,if Φ(G) is finite then Φ(G) is nilpotent.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 22:38:12