请输入您要查询的字词:

 

单词 FrobeniusMorphism
释义

Frobenius morphism


Let K be a field of characteristicPlanetmathPlanetmath p>0 and let q=pr. LetC be a curve defined over K contained in N, theprojective spaceMathworldPlanetmath of dimension N. Define the homogeneous idealMathworldPlanetmath ofC to be (the ideal generated by):

I(C)={fK[X0,,XN]PC,f(P)=0,f is homogeneous}

For fK[X0,,XN], of the form f=iaiX0i0XNiN we define f(q)=iaiqX0i0XNiN. We define a new curve C(q) asthe zero setMathworldPlanetmathPlanetmath of the ideal (generated by):

I(C(q))={f(q)fI(C)}
Definition 1.

The qth-power Frobenius morphism is defined to be:

ϕ:CC(q)
ϕ([x0,,xN])=[x0q,xNq]

In order to check that the Frobenius morphism is well defined weneed to prove that

P=[x0,,xN]Cϕ(P)=[x0q,xNq]C(q)

This is equivalent toproving that for any gI(C(q)) we have g(ϕ(P))=0.Without loss of generality we can assume that g is a generatorPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathof I(C(q)), i.e. g is of the form g=f(q) for somefI(C). Then:

g(ϕ(P))=f(q)(ϕ(P))=f(q)([x0q,,xNq])
=(f([x0,,xN]))q,[aq+bq=(a+b)qin characteristic p]
=(f(P))q
=0,[PC,fI(C)]

as desired.

Example: Suppose E is an elliptic curveMathworldPlanetmath defined overK=𝔽q, the field of pr elements. In this case theFrobenius map is an automorphismPlanetmathPlanetmathPlanetmathPlanetmath of K, therefore

E=E(q)

Hence the Frobenius morphism is an endomorphism (orisogeny) of the elliptic curve.

References

  • 1 Joseph H. Silverman, The Arithmetic of Elliptic Curves. Springer-Verlag, New York, 1986.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 15:43:51