functorial morphism
Functorial morphism is another name for natural transformation which was, and still is,employed especially in the context of category theory
and applications developed by Charles Ehresmann, the ‘Nicolas Bourbaki’ group and other French schools of mathematics; this is also a natural, English translation
of the same concept from French, that is a ‘morphism between functors’, viz. (ref. [4]).
References
- 1 A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
- 2 S. Mac Lane, Categories
for the Working Mathematician (2nd edition), Springer-Verlag, 1997.
- 3 C. Ehresmann, Trends Toward Unity in Mathematics., Cahiers de Topologie et Geometrie Differentielle8: 1-7, 1966.
- 4 C. Ehresmann, Catégories et Structures
. Dunod: Paris , 1965.
- 5 C. Ehresmann, Catégories doubles des quintettes: applications covariantes, C.R.A.S. Paris, 256: 1891-1894, 1963.
- 6 C. Ehresmann, Oeuvres complètes et commentées:Amiens, 1980-84, 1984 (edited and commented by Andrée Ehresmann).
- 7 S. Eilenberg and S. Mac Lane., Natural Isomorphisms in Group Theory., American Mathematical Society 43: 757-831, 1942.
- 8 S. Eilenberg and S. Mac Lane, The General Theory of Natural Equivalences, Transactions of the American Mathematical Society 58: 231-294, 1945.
- 9 P. Gabriel, Des catégories abéliennes, Bull. Soc.Math. France90: 323-448, 1962.
- 10 A. Grothendieck, and J. Dieudoné, Eléments de geometrie algébrique., Publ. Inst. des Hautes Etudes de Science, 4, 1960.
- 11 N. Popescu, Abelian Categories
with Applications to Rings and Modules., New York and London: Academic Press.,1973, 2nd edn. 1975, (English translation by I.C. Baianu).